Home
Class 12
MATHS
Prove that [lim(xrarr0) (sinx.tanx)/(x^(...

Prove that `[lim_(xrarr0) (sinx.tanx)/(x^(2))]=1`,where [.] represents greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(sinx)^(2tanx)

lim_(xrarr0)(sinx)^(2tanx)

lim_(x rarr0)(tan^(2)[x])/([x]^(2)), where [] represents greatest integer function,is

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.