Home
Class 11
MATHS
In quadrilateral A B C D , if sin((A+B)/...

In quadrilateral `A B C D ,` if `sin((A+B)/2)cos((A-B)/2)+"sin"((C+D)/2)cos((C-D)/2)=2` then find the value of `sinA/2sinB/2sinC/2sinD/2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

In quadrilateral ABCD, if sin((A+B)/(2))cos((A-B)/(2))+sin((C+D)/(2))cos((C-D)/(2))=2 then find the value of sin(A)/(2)sin(B)/(2)sin(C)/(2)sin(D)/(2)

In quadrilateral ABCD if sin((A+B)/(2))cos((A-B)/(2))+sin((C+D)/(2))cos((C-D)/(2))=2 , then find the value of "sin"(A)/(2)"sin"(B)/(2)"sin"(C)/(2)"sin"(D)/(2) .

ln a quadrilateral ABCD if sin((A+B)/2)cos((A-B)/2)+sin((C+D)/2)cos((C-D)/2)=2, then sin(A/2)sin(B/2)sin(C/2)sin(D/2) has the value equal to (a)1/8 (b)1/4 (c)1/(2sqrt2) (d)1/2

sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

In a quadrilateral if (sin (A + B)) / (2) (cos (AB)) / (2) + (sin (c + D)) / (2) + (sin (c + D)) / ( 2) (cos (cD)) / (2) = 2, then (cos A) / (2) (cos B) / (2) + (cos A) / (2) (cos c) / (2) + (cos A) / (2) (cos D) / (2) + (cos B) / (2) (cos C) / (2) + (cos B) / (2) (cos D) / (2) + (cos C) / (2) (cos D) / (2)

If A+B+C=pi then prove cos( (A)/2) cos( (B-C)/2) + cos( B/2) cos((C-A)/2) + cos( C/2) cos( (A-B)/2) = sinA +sinB+sinC

Prove that, sinA+sinB+sinC-sin(A+B+C)= 4sin((A+B)/(2))sin((B+C)/(2))sin((C+A)/(2))

If A,B,C and D are angles of quadrilateral and sin(A)/(2)sin(B)/(2)sin(C)/(2)sin(D)/(2)=(1)/(4) , prove that A=B=C=D= pi//2

If A,B,C and D are angles of quadrilateral and sin(A)/(2)sin(B)/(2)sin(C)/(2)sin(D)/(2)=(1)/(4) , prove that A=B=C=D= pi//2