Home
Class 12
MATHS
" Let "I=int(-1)^(1)e^(x)dx...

" Let "I=int_(-1)^(1)e^(x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I= int_(0)^(1) (e^(x))/( x+1) dx, then the vlaue of the intergral int_(0)^(1) (xe^(x^(2)))/( x^(2)+1) dx, is

If lambda=int_(0)^(1)(e^(x))/((x+1))dx, then I=int_(17)^(18)(e^(-x))/(x-19)dx=

"I=int(dx)/(1+e^(x))

Let I=int_(1)^(3)|(x-1)(x-2)(x-3)|dx The value of I^(-1) .

Let I=int_(1)^(3)|(x-1)(x-2)(x-3)|dx. The value of I^(-1) .

Let I=int_(10)^(19)(sinx)/(1+x^8)dx . Then,

I=int(e^x)/(e^(x)-1)dx

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(1)2x^(2)e^(x^2)dx then the value of I_1 +I_2 is equal to

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then