Home
Class 12
MATHS
" 7."quad x=log t,y=e^(t)+cos t...

" 7."quad x=log t,y=e^(t)+cos t

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx : x = log t+ sin t, y = e^t +cos t

The tangent to the curve given by : x=e^(t)cos t, y=e^(t) sin t at t=(pi)/(4) makes with x-axis an angle :

Equations of the tangent and normal to the curve x=e^(t) sin t, y=e^(t) cos t at the point t=0 on it are respectively

Let U(x,y,z) = xyz, x=e^(-t), y=e^(-t) cos t, z= sin t, t in R . Find (dU)/(dt) .

x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

Find dy/dx x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

If x = e ^(t ) sin t, y = e ^(t) cos t, then (d ^(2) y )/(dx ^(2)) at t = pi is

If x=e^(t)sin t,y=e^(t)cos t then (d^(2)y)/(dx^(2)) at x=pi is