Home
Class 12
MATHS
" (j) If "y=Sin x^(sin x)" prove that "(...

" (j) If "y=Sin x^(sin x)" prove that "(dy)/(dx)=(y^(2)Cot x)/(1-y log sin x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(sin x)^((sin x))srove that (dy)/(dx)=(y^(2)cos x)/((1-y log sin x))

If y=(sin x)^(sin x)sim((sin x)dot oo)), prove that (dy)/(dx)=(y^(2)cot x)/((1-y log sin x))

Ify=(sin x)^(sin x)sim((sin x)...oo), Then prove that (dy)/(dx)=(y^(2)cot x)/(1-y log sin x)

If y=(sin x) ^(sin x ^sin x ....oo) then prove that dy/dx=(y^2 cot x)/(1-y log (sin x))

If y=(sin x) ^(sin x ^sin x ....oo) then prove that dy/dx=(y^2 cot x)/(1-y log (sin x))

If (sin x)^(y)=x+y, prove that (dy)/(dx)=(1-(x+y)y cot x)/((x+y)log sin x-1)

If (sin x)^(y)=x+y, prove that(dy)/(dx)=(1-(x+y)y cot x)/((x+y)log sin x-1)

If y=sin(x^(x)), prove that (dy)/(dx)=cos(x^(x))x^(x)(1+log x)

If y = sin(log_(e) x) prove that (dy)/(dx) = sqrt(1-y^2)/x

If (sin x)^(y)=(cos y)^(x), prove that (dy)/(dx)=(log cos y-y cot x)/(log sin x+x tan y)