Home
Class 11
MATHS
" 19.If "A=[[0,1,1],[1,0,1],[1,1,0]],B=(...

" 19.If "A=[[0,1,1],[1,0,1],[1,1,0]],B=(1)/(2)[[b+c,c-a,b-a],[c-b,c+a,a-b],[b-c,a-c,a+b]]" ,then show that "ABA^(-1)" is a diagonal matrix."

Promotional Banner

Similar Questions

Explore conceptually related problems

If S=[(0,1,1),(1,0,1),(1,1,0)], A=(1)/(2)[(b+c,c-a,b-a),(c-b,c+a,a-b),(b-c,a-c,a+b)] , then SAS^(-1)=

If S=[(0,1,1),(1,0,1),(1,1,0)] and A=[(b+c,c-a,b-a),(c-b,c+b,a-b),(b-c,a-c,a+b)] (a, b, c ne 0) , then SAS^(-1) is

If S=[(0,1,1),(1,0,1),(1,1,0)] and A=[(b+c,c-a,b-a),(c-b,c+b,a-b),(b-c,a-c,a+b)] (a, b, c ne 0) , then SAS^(-1) is

If S=[(0,1,1),(1,0,1),(1,1,0)]a n dA=[(b+c,c+a,b-c),(c-b,c+b, a-b),(b-c,a-c,a+b)](a ,b ,c!=0),t h e nS A S^(-1) is

If A=[[1,0],[0,1]],B=[[1,0],[0,-1]] and C=[[0,1],[1,0]] then show that A^(2)=B^(2)=C^(2)

If A=[[1,0,1],[0,2,0],[1,-1,4]],A=B+C,B=B^(T) and C=-C^(T) , then C=

Show that abs[[1,a,a^2],[1,b,b^2],[1,c,c^2]]=(a-b)(b-c)(c-a)

Show that |1a b_c1b c+a1c a+b|=0

If A [[1,2,0],[1,1,0],[-1,4,0]],B=[[1,2,3],[1,1,-1],[1,1,1]]"and"C=[[1,2,3],[1,1,-1],[2,2,2]] Show that AB=AC though B !=C .Verify that: A+(B+C)=(A+B)+C