Home
Class 12
MATHS
" 3.If "tan^(-1)x+tan^(-1)y+tan^(-1)z=pi...

" 3.If "tan^(-1)x+tan^(-1)y+tan^(-1)z=pi," then prove that "x+y+z=xyz

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/2 then

If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi , prove that x + y + z = xyz .

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2) then prove that yz+zx+xy=1

If tan^-1x + tan^-1y + tan^-1z = pi , then prove that: x + y + z = xyz.

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(-1) x + tan^(-1) y - tan^(-1) z = 0 , then prove that : x+ y + xyz = z .