Home
Class 12
MATHS
[" (13) Let "U=sin^(-1)((2x)/(1+x^(2)))"...

[" (13) Let "U=sin^(-1)((2x)/(1+x^(2)))" and "V=tan^(-1)((2x)/(1-x^(2)))" ,then "(dU)/(dV)=],[[" (a) "(1)/(2)," (b) "x," (c) "(1-x^(2))/(1+x^(2))," (d) "1]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If u=sin^(-1)((2x)/(1+x^(2)))andv=tan^(-1)((2x)/(1-x^(2))) , then (du)/(dv) is

If u=sin^(-1)((2x)/(1+x^(2))) and v=tan^(-1)((2x)/(1-x^(2))) , then (du)/(dv) is :

If u=sin^(-1)((2x)/(1+x^(2))) and v=tan^(-1)((2x)/(1-x^(2))), where '-1

Let U=sin^(-1)((2x)/(1+x^2)) and V=tan^(-1)((2x)/(1-x^2)) , then (d U)/(d V)= (a) 1//2 (b) x (c) (1-x^2)/(1+x^2) (d) 1

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

Let U=sin^(-1)((2x)/(1+x^(2))) and V=tan^(-1)((2x)/(1-x^(2))), then (dU)/(dV)=1/2(b)x(c)(1-x^(2))/(1+x^(2))(d)1

If u = sin^-1(2x/(1+x)^2) and v = tan^-1(2x/(1-x^2)) , the du/dv is

Let y_1=tan^(-1)((sqrt(1+x^2)-1)/x) and y_2=tan^(-1)((2xsqrt(1-x^2))/(1-2x^2)) then (dy_1)/(dy_2)=

sin^(-1)((1-tan^(2)x)/(1+tan^(2)x))