Home
Class 12
MATHS
" 9) If "(sin A)/(sin C)=(sin(A-B))/(sin...

" 9) If "(sin A)/(sin C)=(sin(A-B))/(sin(B-c))" then show that "a^(2),b^(2),c^(2)," are in "A.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

In DeltaABC,(sinA)/(sinC)=(sin(A-B))/(sin(B-C)) then prove that a^(2),b^(2),c^(2) are in A.P.

If (sin A)/(sin C)=(sin(A-B))/(sin(B-C)), prove that a^(2),b^(2),c^(2) are in A.P.

If (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) , prove that a^(2), b^(2), c^(2) are in A.P.

In a Delta ABC,(sin A)/(sin C)=(sin(A-B))/(sin(B-C)), then a^(2),b^(2),c^(2) are in

If in a hat harr ABC,(sin A)/(sin C)=(sin(A-B))/(sin(B-C)), prove that a^(2),b^(2),c^(2) are in A.P.

In DeltaABC , (sinA)(sinC) = (sin(A-B))/(sin(B-C)) , prove that a^(2),b^(2),c^(2) are in A.P.

If in a /_ABC,(sin A)/(sin C)=(sin(A-B))/(sin(B-C)) then a^(2):b^(2):c^(2)

If sin A/sin C=sin(A-B)/sin(B-C) then show that a^2,b^2,c^2 are in arithmetic progression

In a triangle ABC , if (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) . Prove that a^2,b^2,c^2 are in A.P.

Solve the following: If frac{sinA}{sinC} = frac{sin(A-B)}{sin(B-C)} , then show that a^2, b^2, c^2 are in A.P.