Home
Class 10
MATHS
CD और GH क्रमशः angleACB और angleE...

CD और GH क्रमशः `angleACB` और `angleEGF` के ऐसे समद्विभाजक हैं कि बिन्दु D और H क्रमशः `DeltaABC` और `DeltaEFG` की भुजाओं AB और FE पर स्थित हैं । यदि `DeltaABC ~DeltaFEG` तो दर्शाइए कि
(i) `(CD)/(GH)=(AC)/(FG)`
(ii) `DeltaDCB~DeltaHGE`
(iii) `DeltaDCA~DeltaHGF`

Promotional Banner

Similar Questions

Explore conceptually related problems

CD and GH are the bisectors of /_ACB and /_EGF respectively. If D lies on AB of DeltaABC and H lies on EF of DeltaEFG and if DeltaABC~DeltaEFG , then prove that (a) (CD)/(GH)=(AC)/(FG) , (b) DeltaDCB~DeltaHGE , (c ) DeltaDCA~DeltaHGF

कोण समद्विभाजक की स्थिति और प्रतिच्छेदी बिंदु

CD and GH are respectively the bisectors of angleACB and angleEGF such that D and H lie on sides AB and FE of DeltaABC and DeltaEFG respectively. If DeltaABC ~ DeltaFEG show that : DeltaDCB~ DeltaHGE

CD and GH are respectively the bisectors of angleACB and angleEGF such that D and H lie on sides AB and FE of DeltaABC and DeltaEFG respectively. If DeltaABC ~ DeltaFEG show that : (CD)/(GH) = (AC)/(FG)

GD and GH are respectively the bisectors of angleACB and angleEGF such that D and H lie on sides AB and FE of DeltaABC and and DeltaEFG respectively. If DeltaABC~DeltaFEG , show that: (CD)/(GH) =(AC)/(FG)

CD and GH are respectively the bisectors of /_ACB" and "/_EGF such that D and H lie on sides AB and FE of DeltaABC" and "DeltaEFG respectively. If DeltaABC ~ DeltaFEG , show that : (CD)/(GH)=(AC)/(FG)

CD and GH are respectively the bisectors of angle ACB and angle EGF such that D and H lie on sides AB and FE of DeltaABC and Delta FEG respectively. IF DeltaABC~DeltaFEG then show that (CD)/(GH)=(AC)/(FG)