Home
Class 12
MATHS
" 30."log(sqrt(x)+(1)/(sqrt(x)))...

" 30."log(sqrt(x)+(1)/(sqrt(x)))

Promotional Banner

Similar Questions

Explore conceptually related problems

logs(sqrt(x)+1/sqrt(x))

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log(sqrt(x)+(1)/(sqrt(x))). Prove that (dy)/(dx)=(x-1)/(2x(x+1))

y=log((sqrt(x+1)+1]/(sqrt(x+1)-1))

(d)/(dx) { log ((sqrt(x+1) -1)/(sqrt(x + 1 ) +1 )) + ( sqrtx)/(sqrt( x +1))}=

int ((log(1+6sqrt(x)))/(3sqrt(x)+sqrt(x))+(1)/(3sqrt(x)+4sqrt(x)))dx

Find x if log_(1//sqrt(2)) (1//sqrt(8)) = log_(2)(4^(x) +1). Log(4^(x+1) +4) ,

[" (v) Differentiate "log[(sqrt(1+x^(2))+x)/(sqrt(1+x^(2))-x)]" w.r.t."],[cos(log x)]