Home
Class 12
MATHS
sin(xy)+x/y=x^(2)-y...

sin(xy)+x/y=x^(2)-y

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following pair of graphs intersect? y=x^(2)-x and y=1y=x^(2)-2x and y=sin xy=x^(2)-x+1 and y=x-4

If sin(xy)+(y)/(x)=x^(2)-y^(2), find (dy)/(dx)

Solution of the differential equation (3xy^(2)+x sin(xy))dy+(y^(3)+y sin(xy))dx=0

cos (x + y), sin (x + y), - cos (x + y) sin (xy), cos (xy), sin (xy) sin2x, 0, sin2y] | = sin2 (x + y)

if y=(1)/(2)sin^(-1)((2xy)/(x^(2)+y^(2))) and y

The factors of x^(3)-x^(2)y-xy^(2)+y^(3) are (a (x+y)(x^(2)-xy+y^(2))(b)(x+y)(x^(2)+xy+y^(2))(c)(x+y)^(2)(x-y)(d)(x-y)^(2)(x+y)

If xy log(x + y) = 1 , then prove that (dy)/(dx) = -(y(x^(2)y + x + y))/(x(xy^(2) + x + y)) .

If y = (sin ^(-1) x ) ^(2) then show that (1- x ^(2)) y _(2) - xy_(1) = 2.