Home
Class 10
MATHS
[cos^(2)A+cos^(2)B-2cos A=cos B(A+B)],[=...

[cos^(2)A+cos^(2)B-2cos A=cos B(A+B)],[=sin^(2)(A+B)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos^(2)A+cos^(2)B-2cos A cos B cos(A+B)=sin^(2)(A+B)

Prove that: cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)

Prove that: cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)

Show that cos^(2) A + cos^(2)B - 2 cos A cos B cos (A + B) = sin^(2) (A + B)

If A+B+C=(3pi)/(2) , prove that cos ^(2)A+ cos ^(2) B- cos ^(2)C=-2 cos A cos B sin C.

cos^(2) (A-B)+cos^(2)B-2cos(A-B) cos A cos B =

Prove the following identities: tan^(2)A-tan^(2)B=(cos^(2)B-cos^(2)A)/(cos^(2)B cos^(2)A)=(sin^(2)A-sin^(2)B)/(cos^(2)A cos^(2)B)(sin A-sin B)/(cos A+cos B)+(cos A-cos B)/(sin A+sin B)=0

Prove that sin ^(2) A cos ^(2) B+cos ^(2) A sin ^(2) B+cos ^(2) A cos ^(2) B+sin ^(2) A sin ^(2) B=1

Prove that: sin^(2)A=cos^(2)(A-B)+cos^(2)B-2cos(A-B)cos A cos B

sin^(2) A cos^(2)B + cos ^(2) A sin^(2) B + sin^(2) A sin^(2) B+ cos^(2) A cos^(2) B=