Home
Class 12
MATHS
" If "y=cot^(-1){(sqrt(1+sin x)+sqrt(1-s...

" If "y=cot^(-1){(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))}," show that "(dy)/(dx)" is independent of "x

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2)

If y=(tan^(-1)(sqrt(1+sin x)+sqrt(1-sin x)))/(sqrt(1+sin x)-sqrt(1-sin x)) find the value of (dy)/(dx)

If y=cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))](0

the expression ((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=

(d)/(dx) [ 2 cot^(-1) ((sqrt(1+ sin x) + sqrt(1-sin x))/(sqrt(1+ sin x) - sqrt(1-sin x)))]=

Find the value of cot^(-1)[(sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x))]

(d)/(dx) Tan^(-1)[(sqrt(1+sinx) - sqrt(1-sin x))/(sqrt(1+sin x) + sqrt(1-sin x))]=

If y=tan^(-1) [(sqrt(1+sinx)-sqrt(1-sin x))/(sqrt(1+sin x)+sqrt(1-sin x)]] where 0 lt x lt pi/2 find (dy)/(dx)