Home
Class 11
MATHS
-11-60sqrt(-1)...

-11-60sqrt(-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find square root of -11-60 sqrt(-1)

The value of (1)/(sqrt(10) - sqrt(9)) - (1)/(sqrt(11)-sqrt(10)) + (1)/(sqrt(12) - sqrt(11))………. - (1)/(sqrt(121) - sqrt(120)) is equal to

(sqrt(10)+sqrt(11)+sqrt(12))xx(sqrt(10)+sqrt(11)-sqrt(12))xx(sqrt(10)-sqrt(11)+sqrt(12))xx(sqrt(10)-sqrt(11)-sqrt(12))

If x=sqrt(11)-sqrt(10),y=sqrt(12)-sqrt(11), then

sqrt(?)-11=sqrt(1521)

sqrt(?)-11=sqrt(1764)

(1)/(sqrt(12)-sqrt(140))+(1)/(sqrt(8-sqrt(60)))=

On the ellipse 2x^(2)+3y^(2)=1 the points at which the tangent is parallel to 4x=3y+4 are ( i )((2)/(sqrt(11)),(1)/(sqrt(11))) or (-(2)/(sqrt(11)),-(1)/(sqrt(11))) (ii) (-(2)/(sqrt(11)),(1)/(sqrt(11))) or ((2)/(sqrt(11)),-(1)/(sqrt(11))) (iii) (-(2)/(5),-(1)/(5)) (iv) ((3)/(5),(2)/(5)) or (-(3)/(5),-(2)/(5))

The value of 1/(sqrt(10) - sqrt(9)) - 1/(sqrt(11) - sqrt(10)) + 1/(sqrt(12) - sqrt(11)) - .... - 1/(sqrt(121) - sqrt(120)) is equal to