Home
Class 12
MATHS
" Prove that "tan^(-1)(x)/(sqrt(a^(2)-x^...

" Prove that "tan^(-1)(x)/(sqrt(a^(2)-x^(2)))=sin^(-1)(x)/(a),|x|

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((x)/(sqrt(a^(2)-x^(2))))="sin"^(-1)(x)/(a)=cos^(-1)((sqrt(a^(2)-x^(2)))/(a)) .

Prove that tan^(-1){(x)/(a+sqrt(a^(2)-x^(2)))}=(1)/(2)(sin^(-1)x)/(a),-a

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)(x/a) ,-a lt x lt a

prove that tan^(-1)((x)/(1+sqrt(1-x^(2)))]=(1)/(2)sin^(-1)x

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)x/a ,-a lt x lt a

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)x/a ,-a lt x lt a

Prove that tan^(-1)((x)/(1+sqrt(1-x^(2))))=(1)/(2)sin^(-1)x .

Prove that tan^(-1) {(x)/(a + sqrt(a^(2) - x^(2)))} = (1)/(2) sin^(-1).(x)/(a), -a lt x lt a

Prove that tan^(-1) {(x)/(a + sqrt(a^(2) - x^(2)))} = (1)/(2) sin^(-1).(x)/(a), -a lt x lt a

Prove that tan^(-1)((sqrt(1+x^2)-1)/x)=1/2 tan^(-1)x .