Home
Class 12
MATHS
Find int[log(logx)+1/((logx)^2)]dx...

Find `int[log(logx)+1/((logx)^2)]dx`

Text Solution

Verified by Experts

The correct Answer is:
`xlog(logx)-(x)/(logx)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.2|30 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(log(logx)+1/((logx)^2))dx

Evaluate int((log x-1)/(1+(logx)^(2)))^(2)dx

Evaluate int(logx)/((1+logx)^(2))dx .

int(dx)/([(logx)^(2)+4]) is:

int[sin(logx)+cos(logx)]dx

Find int2e^x(logx+1/x)dx

int(1)/(x(logx)log(logx))dx=

Integrate the following with respect to x. (logx)/((1+logx)^2)

Evaluate int(1)/(x(1+logx)^(2))dx

Evaluate int((x+1)/(x))(x+logx)^(2)dx