Home
Class 12
MATHS
Evaluate the Integral: inte^(x)(tan^(-1...

Evaluate the Integral:
`inte^(x)(tan^(-1)x+(1)/(1+x^(2)))dx`.

Text Solution

Verified by Experts

The correct Answer is:
`e^(x)tan^(-1)x+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.2|30 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

int(e^(tan^(-1)x))/(1+x^(2))dx :

int(e^(tan^(-1)x))/(1+x^(2))dx

Prove that int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dxdot Hence or otherwise, evaluate the integral int_0^1tan^(-1)(1-x+x^2)dx

evaluate the integrals int_(0)^(4)|x-1|dx

Evaluate int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

evaluate the integrals int_(0)^(1)x(1-x)dx

Evaluate the definite integral int_(2)^(3)(dx)/(1+x^(2))

Evaluate int"tan"^(-1)((2x)/(1-x^(2)))dx

Evaluate the definite integral int_(2)^(4)(dx)/(x^(2)-1)

Evaluate the definite integral int_(1)^(2)(1)/(x)dx