Home
Class 12
MATHS
Consider the integral I=int(xe^(x))/((1+...

Consider the integral `I=int(xe^(x))/((1+x)^(2))dx`
Express the integral I in the form `inte^(x)(f(x)+f'(x))dx`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(1+x)`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.2|30 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

Consider the integral I=int(xe^(x))/((1+x)^(2))dx Hence evaluate I.

Consider the integral I=int(xe^(x))/((1+x)^(2))dx What is the value of inte^(x)(f(x)+f'(x))dx ?

"the integral "int(dx)/(x^2(x^4+1)^(3/4))

I=int(dx)/((2a x-x^2)

Integrate: int(a^(logx))/x dx

Find the following integrals int((x)-(1)/((x)))^(2)dx

Integrate: int x^2 e^(2x) dx

Integrate the functions (xe^(x))/((1+x)^(2))

evaluate the integrals int_(0)^(1)x(1-x)dx