Home
Class 12
MATHS
Consider the integral I=int(xe^(x))/((1+...

Consider the integral `I=int(xe^(x))/((1+x)^(2))dx`
What is the value of `inte^(x)(f(x)+f'(x))dx` ?

Text Solution

Verified by Experts

The correct Answer is:
`e^(x)f(x)+C`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.2|30 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

Consider the integral I=int(xe^(x))/((1+x)^(2))dx Hence evaluate I.

Consider the integral I=int(xe^(x))/((1+x)^(2))dx Express the integral I in the form inte^(x)(f(x)+f'(x))dx

"the integral "int(dx)/(x^2(x^4+1)^(3/4))

Integrate: int(a^(logx))/x dx

Find the following integrals int((x)-(1)/((x)))^(2)dx

Integrate: int x^2 e^(2x) dx

Evaluate: int(x+1)/(x(1+xe^x)^2)dx

int (e^(x)(1+x))/(cos^(2)(xe^(x)))dx is

Evaluate int_(0)^(1)xe^(x^(2))dx