Home
Class 12
MATHS
Show that int(0)^((pi)/(2))cosxdx=int(0)...

Show that `int_(0)^((pi)/(2))cosxdx=int_(0)^((pi)/(2))cosy dy`.

Text Solution

Verified by Experts

The correct Answer is:
`int_(0)^((pi)/(2))cosydy`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.2|30 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

Show that int_(0)^((pi)/(2))sin^(2)xdx=int_(0)^((pi)/(2))cos^(2)xdx=pi/4 .

Show that int_(0)^(pi) g (sinx)dx=2 int_(0)^((pi)/(2))g(sin)dx , where g(sinx) is a function of sinx .

int_(0)^((pi)/(2))sin^5 xdx= .

Show that int_(0)^(2pi) g(cosx)dx=2int_(0)^pi g(cosx)dx , wher g(cosx) is a function of cosx .

Show that int_(0)^((pi)/(2))logsinxdx=(pi)/(2)log((1)/(2))=(-pi)/(2)log2

int_(0)^((pi)/(2)) sin^7 xdx is :

Evaluate int_(0)^(pi/2)logsinxdx

Provethat int_(0)^((pi)/(2))(dx)/(1+tanx)=(pi)/(4)

int_(0)^((pi)/(2)) log (cotx)dx is :