Home
Class 12
MATHS
Show that int(0)^((pi)/(2))sin^(2)xdx=in...

Show that `int_(0)^((pi)/(2))sin^(2)xdx=int_(0)^((pi)/(2))cos^(2)xdx=pi/4`.

Text Solution

Verified by Experts

The correct Answer is:
`pi/4`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.2|30 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))sin^5 xdx= .

Show that int_(0)^((pi)/(2))cosxdx=int_(0)^((pi)/(2))cosy dy .

int_(0)^((pi)/(2)) sin^7 xdx is :

Evaluate int_(0)^((pi)/(4))sin^(2)2xdx

Evaluate int_(0)^(pi)xsin^(3)xdx

int_(0)^((pi)/(2)) e^(2x) cos xdx is :

Show that int_(0)^((pi)/(2))logsinxdx=(pi)/(2)log((1)/(2))=(-pi)/(2)log2

Show that int_(0)^(pi) g (sinx)dx=2 int_(0)^((pi)/(2))g(sin)dx , where g(sinx) is a function of sinx .

Show that int_(0)^((pi)/(2))(tan^(4)x)/(1+tan^(4)x)dx=(pi)/(4)

Provethat int_(0)^((pi)/(2))(dx)/(1+tanx)=(pi)/(4)