Home
Class 12
MATHS
Provethat int(0)^((pi)/(2))(dx)/(1+tanx)...

Provethat `int_(0)^((pi)/(2))(dx)/(1+tanx)=(pi)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
`pi/4`
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.2|30 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(0)^((pi)/(4))log(1+tanx)dx=(pi)/(8)log2

int_(0)^((pi)/(2))(dx)/(1+sqrt(tanx)) is :

Evaluate int_0^((pi)/(2))(dx)/(1+sqrt(tanx))

Prove that int_(0)^(pi/4)log(1+tanx)dx=(pi)/(8) log2.

Show that int_(0)^((pi)/(2))(tan^(4)x)/(1+tan^(4)x)dx=(pi)/(4)

Prove that int_(0)^((pi)/(2)) log ( tan x ) dx = 0

The value of int_(0)^((pi)/(2)) (dx)/( 1+ tan x) is

int_(0)^(pi)(cosx)/(1+sinx)dx=

Show that int_(0)^((pi)/(2))sin^(2)xdx=int_(0)^((pi)/(2))cos^(2)xdx=pi/4 .