Home
Class 12
MATHS
Prove that int((-pi)/(3))^(pi/3)log[(2-s...

Prove that `int_((-pi)/(3))^(pi/3)log[(2-sinx)/(2+sinx)]dx=0`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.2|30 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

Find int_((-pi)/(4))^(pi/4)|sinx|dx

Prove that int_(0)^((pi)/(2)) log ( tan x ) dx = 0

Evaluate the definite integrals int_((pi)/(6))^((pi)/(3))(sinx+cosx)/(sqrt(sin2x))dx .

Evaluate: int_(pi//4)^(pi//4)log(sinx+cosx)dx

Prove that int_(0)^((pi)/(4))log(1+tanx)dx=(pi)/(8)log2

Prove that int_(0)^(pi/4)log(1+tanx)dx=(pi)/(8) log2.

Evaluate: int_(-pi/2)^(2pi)sin^(-1)(sinx)dx

Evaluate int_((pi)/(6))^((pi)/(3))(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx

Prove that int_(0)^(pi)(xsin^(3)x)/(1+cos^(2)x)dx=pi/2(pi-2)

Prove that int_(0)^((pi)/(2)) sin 2x log ( tan x ) dx = 0