Home
Class 12
MATHS
inte^(x)secx(1+tanx)dx equals...

`inte^(x)secx(1+tanx)dx` equals

A

`e^(x)cosx+C`

B

`e^(x)secx+C`

C

`e^(x)sinx+C`

D

`e^(x)tanx+C`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.7|13 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.8|6 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate inte^(x)secx(1+tanx)dx .

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

inte^(tanx)(sinx-secx)dx is equal to

Evaluate int(tanx)/(secx+tanx)dx

int sqrt(e^(x)-1)dx is equal to

The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitrary constant K)dot -1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K 1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K -1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K 1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K

Evaluate: int(secx)/(secx+tanx)dxdot

int(x^3-x)/(1+x^6)dx is equal to

int(e^(x))/(x)(1+xlogx)dx is equal to

int(dx)/(e^(x)+e^(-x)) is equal to