Home
Class 12
MATHS
Suppose f(x)=(d)/(dx)(e^(x)+2). Find i...

Suppose `f(x)=(d)/(dx)(e^(x)+2)`. Find
`intf(x)dx`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise ADDITIONAL QUESTIONS FOR PRACTICE 7.2|20 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise ADDITIONAL QUESTIONS FOR PRACTICE 7.2 (Fill in the blanks)|4 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE 7.11|20 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

Suppose f(x)=(d)/(dx)(e^(x)+2) . Find int(f(x)+x^(2))dx

Suppose f(x)=(d)/(dx)(e^(x)+2) . Find int(f(x)-sinx)dx .

d/dx( e^(x+5logx))

(d)/(dx)(e^(x+5log x)) is .............. .

(d)/(dx) (e^(x + 5 log x)) is …........... .

d/(dx) (e^(x+5logx)) is ………………………. .

f_n(x)=e^(f_(n-1)(x)) for all n in Na n df_0(x)=x ,t h e n d/(dx){f_n(x)} is (a) (f_n(x)d)/(dx){f_(n-1)(x)} (b) f_n(x)f_(n-1)(x) (c) f_n(x)f_(n-1)(x).......f_2(x)dotf_1(x) (d)none of these

The function f(x)=e^x+x , being differentiable and one-to-one, has a differentiable inverse f^(-1)(x)dot The value of d/(dx)(f^(-1)) at the point f(log2) is (a) 1/(1n2) (b) 1/3 (c) 1/4 (d) none of these