Home
Class 12
MATHS
Show that int(0)^((pi)/(2))(tan^(4)x)/(1...

Show that `int_(0)^((pi)/(2))(tan^(4)x)/(1+tan^(4)x)dx=(pi)/(4)`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise NCERT MISCELLANEOUS EXERCIES|44 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise UNIT TEST|8 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise ADDITIONAL QUESTIONS FOR PRACTICE 7.10|9 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

Provethat int_(0)^((pi)/(2))(dx)/(1+tanx)=(pi)/(4)

Evaluate int_(0)^((pi)/(2))(tan^(2)x)/(tan^(2)x+cot^(2)x)dx

Show that int_(0)^(1)tan ^(-1)x+tan^(-1)(1-x)dx=(pi)/(2)-log_(e)2

Prove that int_(0)^(pi/4)(sin2xdx)/(sin^(4)x+cos^4 x)=(pi)/(4)

The value of int_(0)^((pi)/(2)) (dx)/( 1+ tan x) is

Show that int_(0)^(1)(e^(x))/(1+e^(2x))dx=tan^(-1)(e)-pi/(4)

Evaluate int_(0)^(pi/2)(sin^(4)x)/(sin^(4)x+cos^(4)x)dx

Prove that int_(0)^((pi)/(2)) sin 2x log ( tan x ) dx = 0

Evaluate int_(0)^((pi)/(2))(3sin^3x+4cos^4x)dx .

Prove that int_(0)^((pi)/(2)) log ( tan x ) dx = 0