Home
Class 12
MATHS
Show that int(0)^(1)(e^(x))/(1+e^(2x))dx...

Show that `int_(0)^(1)(e^(x))/(1+e^(2x))dx=tan^(-1)(e)-pi/(4)`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise CONTINUOUS EVALUATION (ASSIGNMENT )|4 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise CONTINUOUS EVALUATION (PROJECT )|1 Videos
  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise NCERT MISCELLANEOUS EXERCIES|44 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)e^(2x)e^(e^(x) dx =)

Evaluate int_(0)^(1) (e^(x))/( 1+ e^(2x)) dx

Evaluate int_0^1(e^x)/(1+e^(2x)) dx

int(e^x)/(e^(2x)+4)dx

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

int(e^(x)+1)/(e^(x))dx :

Show that int_(0)^((pi)/(2))(tan^(4)x)/(1+tan^(4)x)dx=(pi)/(4)

Evaluate int_(0)^(1) e^(-x)(1+x^2)dx .

int(e^(tan^(-1)x))/(1+x^(2))dx

Evaluate int_(0)^(1) x e^(-2x) dx