Home
Class 12
MATHS
int2x.e^(x^(2))dx equal to...

`int2x.e^(x^(2))dx` equal to

A

`-e^(x^(2))+C`

B

`e^(x^(2))+C`

C

`e^(x)+C`

D

`-e^(x)+C`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise CONTINUOUS EVALUATION (PROJECT )|1 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

intx^(2)e^(x^(3))dx equals

int(x)/(e^(x^(2)))dx

int(e^(x)(x-1)(x-lnx))/(x^(2))dx is equal to

int_(1)^(2)x^(2)dx is equal to

int x.2^(ln(x^(2)+1))dx is equal to

int(sin^(2)x+cos^(2)x)/(sin^(2)xcos^(2)x)dx is equal to

int(1)/((1+sqrtx)sqrt(x-x^(2)))dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function for which int_0^2f(x)dx=5,t h e nint_0^(50)f(x)dx is equal to 125 (b) int_(-4)^(46)f(x)dx int_1^(51)f(x)dx (d) int_2^(52)f(x)dx

Evaluate int 2x^(3)e^(x^(2))dx .