Home
Class 12
MATHS
intcos^(3)x.e^(logsinx)dx is equal to...

`intcos^(3)x.e^(logsinx)dx` is equal to

A

`(cos^(4)x)/(4)+C`

B

`(-cos^(4)x)/(4)+C`

C

`(cos^(4)x)/(4x)+C`

D

`(-cos^(4)x)/(4x)+C`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise CONTINUOUS EVALUATION (PROJECT )|1 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

int(e^(alogx)+e^(xloga))dx is equal to

int(e^(x))/(x)(1+xlogx)dx is equal to

The integral intcos(log_(e)x)dx is equal to: (where C is a constant of integration)

int(x^(3)-1)/(x^(3)+x) dx is equal to:

int sqrt(e^(x)-1)dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

intsin4x e^(tan^(2)x)dx = c-A cos^(4)x.e^(tan^(2)x) then A is equal to

If int_1^2e^(x^2)dx=a ,t h e nint_e^(e^4)sqrt(1n x)dx is equal to (a) 2e^4-2e-a (b) 2e^4-e-a (c) 2e^4-e-2a (d) e^4-e-a

Evaluate inte^(logsinx)dx .

The integral int(1+x-1/x)e^(x+1/x)dx is equal to