Home
Class 12
MATHS
int(e^(alogx)+e^(xloga))dx is equal to...

`int(e^(alogx)+e^(xloga))dx` is equal to

A

`(x^(a+1))/(a+1)`

B

`(x^(a+1))/(a+1)+(a^(x))/(loga)`

C

`x^(a+1)+a^(x)`

D

`(x^(a-1))/(a-1)+(loga)/(a^(x))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise CONTINUOUS EVALUATION (PROJECT )|1 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

inte^(alogx)dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int(e^(x))/(x)(1+xlogx)dx is equal to

int sqrt(e^(x)-1)dx is equal to

intcos^(3)x.e^(logsinx)dx is equal to

int(dx)/(e^(x)+e^(-x)) is equal to

int2x.e^(x^(2))dx equal to

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to

int ((x+2)/(x+4))^2 e^x dx is equal to