Home
Class 12
MATHS
The value of int(e^(5log(e)x)+e^(4log(e)...

The value of `int(e^(5log_(e)x)+e^(4log_(e)x))/(e^(3log_(e)x)+e^(2log_(e)x))dx` is

A

`x^(2)+C`

B

`(x^(2))/(2)+C`

C

`(x^(3))/(3)+C`

D

`(x)/(2)+C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise CONTINUOUS EVALUATION (PROJECT )|1 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

int (e^(6 log x) - e ^(5 log x))/( e^(4 log x) - e^(3 log x)) dx

int(e^(6 log x) - e^(5 log x))/(e^(4 log x) - e^(3 log x)) dx ……………. .

If x gt 0 , y gt 0 , z gt 0 , the least value of x^(log_(e)y-log_(e)z)+y^(log_(e)z-log_(e)x)+Z^(log_(e)x-log_(e)y) is

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx

The value of (6a^((log)_e b)((log)_(a^2)b)((log)_(b^2)a))/(e^((log)_e a(log)_e b)) is (a) independent of a (b) independent of b (c) dependent on a (d) dependent on b

Evaluate: int(log_(e x)e*log_(e^2x)e*log_(e^3x)e)/x dx

I=int \ log_e (log_ex)/(x(log_e x))dx

lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to