Home
Class 12
MATHS
If intsinx(d)/(dx)("sec x")dx=f(x)-g(x)+...

If `intsinx(d)/(dx)("sec x")dx=f(x)-g(x)+C` , then

A

`f(x)=secx`

B

`f(x)=tanx`

C

`g(x)=2x`

D

`g(x)=x^(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise CONTINUOUS EVALUATION (PROJECT )|1 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

If intsinx d(secx)=f(x)-g(x)+c ,t h e n f(x)=secx (b) f(x)=tanx g(x)=2x (d) g(x)=x

If (d)/(dx)f(x)=4x^(3)-(3)/(x^(4)) , then f(x) is

Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then (a) f(x)=1/2x^2 (b) g(x)=logx (c) A=1 (d) none of these

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

int(cosx-sinx+1-x)/(e^(x)+sinx+x)dx=log_(e)(f(x))+g(x)+C where C is the constant of integration and f(x) is positive. Then f(x)+g(x) has the value equal to

Let f(x) and g(x) are two differentiable functions. If f(x)=g(x) , then show that f'(x)=g'(x) . Is the converse true ? Justify your answer