Home
Class 12
MATHS
inte^(x)(sinx+2cosx)sinxdx is equal to...

`inte^(x)(sinx+2cosx)sinxdx` is equal to

A

`e^(x)cosx+C`

B

`e^(x)sinx+C`

C

`e^(x)sin^(2)x+C`

D

`e^(x)sin2x+C`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise CONTINUOUS EVALUATION (PROJECT )|1 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

int(In(tanx))/(sinx cosx)dx " is equal to "

Choose the correct answers int(cos2x)/((sinx+cosx)^(2))dx is equal to

The value of int(cos^(3)x)/(sin^(2)x+sinx)dx is equal to

int x sinx sec^(3)x dx is equal to

Find inte^(x)sinxdx

int(sinx)/((2+cosx)^(2))dx

int_(0)^(pi)(cosx)/(1+sinx)dx=

int(sqrt((cosx)/(x))-sqrt((x)/(cosx))sinx)dx equals

The value of int_(-pi//2)^(pi//2)(x^(2)cosx)/(1+e^(x)) d x is equal to

The soluation set of inequality (sinx+cos^(- 1)x)-(cosx-sin^-1x)>= pi/2, is equal to