Home
Class 12
MATHS
int(0)^(pi)(cosx)/(1+sinx)dx=...

`int_(0)^(pi)(cosx)/(1+sinx)dx=`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise CONTINUOUS EVALUATION (PROJECT )|1 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(pi)(x)/(1+sinx) dx.

Evaluate int_(0)^(pi)(sin 6x)/(sinx) dx .

Evaluate the following : int_(0)^(pi)(dx)/(1+sinx)

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi/2)(sinx-cosx)/(1+sinxcosx)dx

Evaluate int_(0)^(pi/2)sinx/(cosx+sinx)dx .

Evaluate the following integrals using properties of integration : int_(0)^(pi) ( x sinx )/( 1+ sinx ) dx

Evaluate, int_(0)^(pi//2)(dx)/(5+4sinx) .

Prove that int_(0)^1 ((tan^(-1)x)/x) dx=1/2int_(0)^((pi)/2)x/(sinx)dx .

int_(0)^(pi/2)e^(-x) sinx dx is

Evaluate: int_(0)^(pi/4)(1)/(sinx+cosx) dx.