Home
Class 12
MATHS
Let the vectors veca, vecb, vec c be giv...

Let the vectors `veca, vecb, vec c` be given as `a_(1)hat i + a_(2)hatj + a_(3)hat k, b_(1)hat i + b_(2) hat j + b_(3) hat k`, `c_(1)hat i + (c_(2)hat j )+( c_(3)hat k)`.Then show tha`vec a xx(vec b + vec c) = (vec a xx vec b)+( vec a xx vec c`).

Text Solution

Verified by Experts

The correct Answer is:
`= vec a xx vec b + vec a xx vec c`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise ADDITIONAL QUESTIONS FOR PRACTICE 10.1|2 Videos
  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise ADDITIONAL QUESTIONS FOR PRACTICE 10.2|13 Videos
  • VECTOR ALGEBRA

    NEW JOYTHI PUBLICATION|Exercise SOLUTIONS TO NCERT TEXT BOOK EXERCISE 10.3|18 Videos
  • TRIGONOMETRIC FUNCTIONS

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|134 Videos

Similar Questions

Explore conceptually related problems

Find [vec a, vec b, vec c] if vec a = hat i - 2 hat j + 3 hat k , vec b = 2 hat i - 3 hat j + hat k and vec c = 3 hat i + hat j - 2 hat k .

Find |vec a xx vec b| if vec a = hat i -7 hat j + 7 hat k and vec b = 3 hat i - 2 hat j + 2 hat k .

If vec a = 2 hat i - 3 hat j + 4 hat k , vec b = hat i + 2 hat j - hat k and vec c = 3 hat i - hat j + 2 hat k , then (i) find [vec a vec b vec c] (ii) find [ vec a + vec b vec b + vec c vec c + veca] .

If vec a = 5 hat i - hat j - 3 hat k and vec b = hat i + 3 hat j - 5 hat k , then show that the vectors vec a + vec b and vec a - vec b are orthogonal

Let vec a = hat i + hat j + hat k , vec b = hat i and vec c = c_(1)hat i + c_(2)hat j + c_(3)hat k . If c_(1) = 1 and c_(2) = 2 , find c_(3) which makes vec a, vec b and vec c coplanar.

Find vec a. vec b , when vec a = hat i + hat j + 2 hat k and vec b = 3 hat i + 2 hat j - hat k .

Find vec a.(vec b xx vec c) , if vec a = 2 hat i + hat j + 3 hat k, vec b = - hat i + 2 hat j + hat k and vec c = 3 hat i + hat j + 2 hat k .

Find |vec a xx vec b| if vec a = 2 hat i - hat j + 3 hat k and vec b = 3 hat i - 5 hat j + 2 hat k .

Let vec a = hat i + hat j + hat k , vec b = hat i and vec c = c_(1)hat i + c_(2)hat j +c_(3)hat k . Then if c_(2) = -1 and c_(3) = 1 , show that no value of c_(1) can make vec a, vec b and vec c coplanar.

Find the unit vector along vec a - vec b where veca = hat i + 3 hat j - hat k and vec b = 3 hat i + 2 hat j + hat k .