Home
Class 12
MATHS
int(1)/([1+x^(2)]tan^(-1)x)dx=...

int(1)/([1+x^(2)]tan^(-1)x)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following integrals. int(1)/(1+x^(2))e^(tan^(-1)x)dx

int(1)/((1+x^(2))sqrt(tan^(-1)x))dx=?

int(1)/(x^(2))tan^(2)((1)/(x))dx

Statement I int((1)/(1+x^(4)))dx=tan^(-1)(x^(2))+C Statement II int(1)/(1+x^(2))dx=tan^(-1)x +C

Statement I int((1)/(1+x^(4)))dx=tan^(-1)(x^(2))+C Statement II int(1)/(1+x^(2))dx=tan^(-1)x +C

Statement I int((1)/(1+x^(4)))dx=tan^(-1)(x^(2))+C Statement II int(1)/(1+x^(2))dx=tan^(-1)x +C

int_(-1)^(1)e^(tan^(-1)x)((1+x+x^(2))/(1+x^(2)))dx

int_(-1)^(1) tan^(-1) x dx =

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to

If 2int_(0)^(1)tan^(-1)xdx=int_(0)^(1)cot^(-1)(1-x+x^(2))dx then int_(0)^(1)tan^(-1)(1-x-x^(2))dx is equal to