Home
Class 12
MATHS
Three vectors -> a , -> b and -> c sa...

Three vectors ` -> a` , ` -> b` and ` -> c` satisfy the condition ` -> a+ -> b+ -> c= ->0` . Evaluate the quantity `mu= -> adot -> b+ -> bdot -> c+ -> cdot -> a` , if `| -> a|=1,| -> b|=4` and `| -> c|=2` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Three vectors vec a , vec b , vec c satisfy the condition vec a+ vec b+ vec c= vec0 . Evaluate the quantity mu= vec adot vec b+ vec bdot vec c+ vec cdot vec a , if | vec a|=1, | vec b|=4 a n d | vec c|=2.

Three vectors vec a ,\ vec b ,\ vec c satisfy the condition vec a+ vec b+ vec c= vec0 . Evaluate the quantity mu= vec adot vec b+ vec bdot vec c+ vec cdot vec a ,\ if\ | vec a|=1,\ | vec b|=4\ a n d\ | vec c|=2.

If -> a , -> b , -> c are unit vectors such that -> a+ -> b+ -> c= ->0 find the value of -> adot -> b+ -> bdot -> c+ -> cdot -> a .

Three vectors vec a, vec b and vec c satisfy the condition vec a + vec b + vec b + vec c = vec 0 .Evaluate the quantity mu = vec a * vec b + vec b * vec c + vec c * vec a , if | vec a | = 1 | vec b | = 4 and | vec c | = 2

Three vectors veca, vec b and vec c satisfy the condition vec a + vec b + vec c = 0 .Evaluate the quantity. mu = vec a.vec b + vec b.vec c+ veca.vec c if |vec a| = 1, |vec b| = 4, |vec c| = 2

Three vectors vec(a),vec(b) and vec( c ) satisfy the condition vec(a)+vec(b)+vec( c )=vec(0) . Evaluate the quantity mu=vec(a).vec(b)+vec(b).vec( c )+vec( c ).vec(a) , if |vec(a)|=1,|vec(b)|=4 and |vec( c )|=2 .

Three vector A,B and C satisfy the relation A.B=0 and A. C =0. Then the vector A is perpendicular to

If three unit vectors vec a , vec b , and vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec a and vec bdot