Home
Class 12
MATHS
Let z be a complex number satisfying ...

Let z be a complex number satisfying
`|(z-4)/(z-8)|=1and|(z)/(z-2)|=3/2`
What is `|z|` equal to ?

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z be a complex number satisfying |(z-4)/(z-8)|=1and|(z)/(z-2)|=3/2 What is |(z-6)/(z+6)| equal to ?

Let z be a complex number satisfying |z+16|=4|z+1| . Then

Let z be a complex number satisfying |z+16|=4|z+1| . Then

Let z be a complex number satisfying |z+16|=4|z+1| . Then

Let z be a complex number satisfying |z+16|=4|z+1| . Then

Let z_(1), z_(2) be two complex numbers satisfying the equations |(z-4)/(z-8)|= 1 and |(z-8i)/(z-12)|=(3)/(5) , then sqrt(|z_(1)-z_(2)|) is equal to __________

Let z be a complex number satisfying (3+2i) z +(5i-4) bar(z) =-11-7i .Then |z|^(2) is

The number of complex numbers z satisfying |z-2-i|=|z-8+i| and |z+3|=1 is