Home
Class 12
MATHS
The value of the integral int(0)^(0.9) [...

The value of the integral `int_(0)^(0.9) [x-2[x]] dx`, where [.] denotes the greatest integer function, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(1.5) x[x^2] dx , where [.] denotes the greatest integer function

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

int_(0)^(5)e^([x])dx is (where [.] denotes the greatest integer function)

Evaluate int_(0)^(3) [x]dx ,where [.] denotes the greatest integer function.

Evaluate int_(0)^(100)e^(x-[x])dx where [ ] denotes the greatest integer function.

The integral int_(0)^(1.5)[x^(2)]dx, where [.] denotoes the greatest integer function,equals .........

int_0^(2) [2x]dx = , where [.] denotes the greatest function.