Home
Class 12
MATHS
Prove that 2tan^(-1)1/x=sin^(-1)((2x)/(x...

Prove that `2tan^(-1)1/x=sin^(-1)((2x)/(x^(2)+1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2 tan^-1 (1/x) = sin^-1 ((2x)/(1+x^2)), |x| ge 1

If x in (-1,1) prove that 2Tan^(-1)x="Tan"^(-1)(2x)/(1-x^(2))

To prove that tan((1)/(2)sin^(-1)((2x)/(1+x^(2)))+(1)/(2)cos^(-1)((1-x^(2))/(1+x^(2)))=(2x)/(1-x^(2))

prove that, 2 tan^(-1) 2x = sin^(-1).(4x)/(1 + 4x^(2))

Prove that 2tan^(-1)((1+x)/(1-x))+sin^(-1)((1-x^(2))/(1+x^(2)))=pi

Prove the following: 2tan^(-1)x=sin^(-1)((2x)/(1+x^(2))),+x+le1

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))