Home
Class 12
MATHS
" Prove that "int(0)^(1/4)log(1+tan x)dx...

" Prove that "int_(0)^(1/4)log(1+tan x)dx=(pi)/(8)log2

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(pi/4)log(1+tanx)dx=(pi)/(8) log2.

Prove that int_(0)^((pi)/(4))log(1+tanx)dx=(pi)/(8)log2

8. int_0^(pi/4) log(1+tanx)dx

int_(0)^(1)(log|1+x|)/(1+x^(2))dx=(pi)/(8)log2

Prove that int_(0)^(1)log((1)/(x)-1)dx=0 .

int_(0)^(pi//2) log (tan x ) dx=

int_(0)^(pi//4) log (1+tan x) dx =?

int_(0)^((pi)/(2))log(tan x)*dx

Prove that int_(0)^((pi)/(2)) log ( tan x ) dx = 0