Home
Class 12
MATHS
tan^(-1)(1)/(x)+tan^(-1)2=(pi)/(2)...

tan^(-1)(1)/(x)+tan^(-1)2=(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is 2(b)3 (c) 1(d)0

tan^(-1)((a)/(x))+tan^(-1)((b)/(x))=(pi)/(2) then x=

If tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6), then prove that x^(2)=2sqrt(3).

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

"If " tan^(-1) x+ tan^(-1) y+tan ^(-1)z=(pi)/(2) , show that , xy+yz+zx =1

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is 2 (b) 3 (c) 1 (d) 0

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is 2 (b) 3 (c) 1 (d) 0

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is 2 (b) 3 (c) 1 (d) 0

If tan ^(-1) ((a)/(x))+tan ^(-1) ((b)/(x))=(pi)/(2), then x=