Home
Class 12
MATHS
" Let "I(n)=int(0)^(1)(1-x^(3))^(n)dx,(n...

" Let "I_(n)=int_(0)^(1)(1-x^(3))^(n)dx,(n in N)" then "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

If I_(n)=int_(0)^(1)(dx)/((1+x^(2))^(n));n in N, then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_(n)

Let I_(n)=int_(1)^(e)(ln x)^(n)dx,n in N Statement II_(1),I_(2),I_(3) is an increasing sequence.Statement II In x is an increasing function.

If I_(n)=int_(0)^(1)x^(n)e^(-x)dx for n in N, then I_(7)-I_(6)=

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx, then

Let I_(n),=int_(0)^(1)(1-x^(a))^(n) and if (I_(n))/(I_(n+1)),=1+(lambda)/(alpha) then lambda equals (A) n(B)n+1 (C) (1)/(n),(D)(1)/(n+1)

U_(n)=int_(0)^(1)x^(n)(2-x)^(n)dx and V_(n)=int_(0)^(1)x^(n)(1-x)^(n)dx,n in N and if (V_(n))/(U_(n))=1024, then the value of n is