Home
Class 11
MATHS
[" Let "A=int(0)^(1)(e^(t)dt)/(1+t)dt" t...

[" Let "A=int_(0)^(1)(e^(t)dt)/(1+t)dt" then "int_(a-1)^(a)(e^(-t))/(t-a-1)dt" has the value "],[[" (A) "Ae^(-a)," (B) "-Ae^(-a),(C)-ae^(-a)," (D) "Ae^(a)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A = int_(0)^(1)(e^(t))/(1+t) dt , then int_(a-1)^(a)(e^(-1))/(t-a-1) dt has the value :

If b=int_(0)^(1) (e^(t))/(t+1)dt , then int_(a-1)^(a) (e^(-t))/(t-a-1) is

If int_(0)^(1)(e^(t))/(t+1)dt=a, then int_(b-1)^(b)(e^(-t))/(t-b-1)dt=

int_(0)^(1)t^(2)sqrt(1-t)*dt

If A = int_(0)^(1) (e^(t))/(1+ t)dt then int_(0)^(1) e^(t) ln (1 + t) dt=

If int_(0)^(1)(e^(t))/(1+t)dt=a then int_(0)^(1)(e^(t))/((1+t)^(2))dt is equal to

If int_(0)^(1)(e^(t)dt)/(t+1)=a, then evaluate int_(b-1)^(b)(e^(t)dt)/(t-b-1)

If rArr int_(0)^(1) (e^(-t))/(t+1) dt =a, "then"int_(b-1)^(b) (e^(-1))/(t-b-1)dt is equal to

If k=int_(0)^(1) (e^(t))/(1+t)dt , then int_(0)^(1) e^(t)log_(e )(1+t)dt is equal to

Let A = int_0^(1) e^(t)/(t+1) dt , then int_0^(1) (t.e^(t^(2)))/(t^(2)+1) dt =