Home
Class 12
MATHS
Let A ,B ,C be three sets of complex num...

Let `A ,B ,C` be three sets of complex number as defined below `A={z : I m zgeq1}` `B={z :|z-2-i|=3}` `C={"z : R e((1-i)z")"=sqrt(2)}` The number of elements in the set `AnnBnnC` is 0 (b) 1 (c) 2 (d) `oo`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A, B, C be three sets of complex number as defined below: A={z:Imge1}, B={z:|z-2-i|= 3},C:{z:Re((1-i)z)=sqrt(2)} The number of elements in the set AnnBnnC is

Let A, B, C be three sets of complex number as defined below: A={z:Imge1}, B={z:|z-2-i|= 3},C:{z:Re((1-i)z)=sqrt(2)} The number of elements in the set AnnBnnC is

Let A, B, C be three sets of complex number as defined below: A={z:Imge1}, B={z:|z-2-i|= 3},C:{z:Re((1-i)z)=sqrt(2)} The number of elements in the set AnnBnnC is

Let A,B,C be three sets of complex number as defined below: A={z:Im>=1},B={z:|z-2-i|=3},C:{z:Re((1-i)z)=sqrt(2)} The number of elements in the set A nn B nn C is

Let A,B,C b ethree sets of complex numbers as defined A={z:Im zge 1} B={z:abs(z-2-i)=3} C={z:Re((1-i)z)=sqrt2} The number of elements in the set AcapBcapC is

Let A,B,C be three sets of complex numbers as defined below.A={z:|z+1| =1} and C={z:|(z-1)/(z+1)|>=1}

A,B,C be three sets of complex number as defined below : A = {z : "In" z ge 1} , B = {z :| z - 2 - I | = 3 } " and " C = {z : Re ((1 - i)z) = sqrt(2)) Let z be any point in A nn B nn C . The |z + 1 - i|^(2) + |z - 5 -i|^(2) lies between :

Let A,B,C be three sets of complex number as defined below A={z:lm (z) ge 1} B={z:|z-2-i|=3} C={z:Re((1-i)z)=sqrt(2)} Let z be any point in A cap B cap C and let w be any point satisfying |w-2-i|lt 3 Then |z|-|w|+3 lies between

If C={z:Re[(3+4i)z]=0} thenthe number of elements in the set BcapC is (A) 0 (B) 1 (C) 2 (D) none of these

Let A,B,C b ethree sets of complex numbers as defined A={z:Im zge 1} B={z:abs(z-2-i)=3} C={z:Re((1-i)z)=sqrt2} Let z be any point in AcapBcapC then abs(z+1-i)^2+abs(z-5-i)^2 lies between