Home
Class 11
MATHS
If P(Y)=Y^(4)-Y^(2)+Y then P((1)/(2)) is...

If `P(Y)=Y^(4)-Y^(2)+Y` then `P((1)/(2))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=1 and P=(3x-4x^(3))^(2)+(3y-4y^(3))^(2) then P is equal to

If p(y)=3y^(4)-5y^(3)+y^(2)+8 , then p(-1) will be

If P (y)=y^(2)-2y+5 , find P (2)

If P= (x^3+y^3)/((x-y)^2+3xy), Q= ((x+y)^2-3xy)/(x^3-y^3) and R=((x+y)^2+(x-y)^2)/(x^2-y^2) , then (P div Q) xx R is equal to: यदि P= (x^3+y^3)/((x-y)^2+3xy), Q= ((x+y)^2-3xy)/(x^3-y^3) तथा R=((x+y)^2+(x-y)^2)/(x^2-y^2) है, तो (P div Q) xx R का मान क्या होगा ?

The lines (x-2)/(2)=(y)/(-2)=(z-7)/(16) and (x+3)/(4)=(y+2)/(3)=(z+2)/(1) intersect at the point "P" .If the distance of "P" from the line (x+1)/(2)=(y-1)/(3)=(z-1)/(1) is "l" ,then 14l^(2) is equal to

For the curve 32x^(3)y^(2)=(x+y)^(5) , the value of (d^(2)y)/(dx^(2)) at P(1,1) is equal to

If the angle between the lines, x/2=y/2=z/1 and (5-x)/(-2) = (7y-14)/(p ) = (z-3)/(4) is cos ^(-1) ((2)/(3)), then P is equal to