Home
Class 12
MATHS
Solve : tan^(-1) ((x-1) /( x-2))-tan^(-1...

Solve : `tan^(-1) ((x-1) /( x-2))-tan^(-1)((x+1)/(x+2))=(pi)/(4)`,

Text Solution

Verified by Experts

`tan^(-1).(x -1)/(x + 2) + tan^(-1).(x + 1)/(x + 2) = (pi)/(4)`
`rArr tan^(-1) [((x -1)/(x + 2) + (x + 1 )/(x + 2))/(1 - ((x -1)/(x + 2)) ((x +1)/(x + 2)))] = (pi)/(4)`
`rArr [(2x (x + 2))/(x^(2) + 4 + 4x -x^(2) + 1)] = tan.(pi)/(4)`
`rArr (2x (x + 2))/(4x + 5) = 1`
`rarr 2x^(2) + 4x = 4x + 5`
`:. x = +- sqrt((5)/(2))`
But for `x = -sqrt5//2`, L.H.S. is negative
Hence, `x = sqrt(5//2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x:tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=(pi)/(4)

(tan^(-1)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4). find

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4), then find the value of x.

tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=(pi)/(4) , |x| lt 1

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

If tan^(-1)((x-1)/(x-2))+cot^(-1)((x+2)/(x+1))=(pi)/(4) , find x.

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4) then find the value of x

Solve the equation (tan^(-)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4)

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))