Home
Class 12
MATHS
" The value of the integral "int(0)^( pi...

" The value of the integral "int_(0)^( pi)(dx)/(1+tan^(3)x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(dx)/(1+tan^(3)x)=

The value of the integral I=int_(0)^(pi)(x)/(1+tan^(6)x)dx, (x not equal to (pi)/(2) ) is equal to

The value of the integral I=int_(0)^(pi)(x)/(1+tan^(6)x)dx, (x not equal to (pi)/(2) ) is equal to

The value of the integral int_(pi//6)^(pi//3)(dx)/(1+tan^(5)x) is

The value of the integral int_(pi//6)^(pi//3)(dx)/(1+tan^(5)x) is

int_(0)^(pi//2)(1)/(1+tan^(3)x)dx=

The value of integral int_(0)^( pi)xf(sin x)dx=

Find the mistake of the following evaluation of the integral I=int_(0)^( pi)(dx)/(1+2sin^(2)x)I=int_(0)^( pi)(dx)/(cos^(2)x+3sin^(2)x)=int_(0)^( pi)(sec^(2)xdx)/(1+3tan^(2)x)=(1)/(sqrt(3))[tan^(-1)(sqrt(3)tan x)]_(0)^( pi)=0

For 0 lt alt 1 ,the value of the integral int_(0)^( pi)(dx)/(1-2a cos x+a^(2)) is:

The value of the integral int_(0)^(pi) (1)/(e^(cosx)+1)dx , is