Home
Class 12
MATHS
" Prove that "cos[tan^(-1){sin(cot^(-1)x...

" Prove that "cos[tan^(-1){sin(cot^(-1)x)}]=sqrt((1+x^(2))/(2+x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos[Tan^(-1){sin(Cot^(-1)x)}] = sqrt((x^(2)+1)/(x^(2)+2))

Prove that cos[tan^(-1){sin(cos^(-1)x)}]=(1)/(sqrt(2-x^(2)))

Prove that cos [tan^(-1){(sin(cot^(-1)x}] =((x^(2)+1)/(x^(2)+2)) ^(1/2)

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))

Prove that costan^(-1)sin cot^(-1)x=sqrt((x^2+1)/(x^2+2))

Prove that : cos [ tan^(-1) { sin (cot^(-1) x)}]= sqrt((x^2 +1)/(x^2 +2))

Prove the following: cos[tan^-1{sin(cot^-1x)}]=sqrt((1+x^2)/(2+x^2))

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))